Final Exam

Instructions: Write your solutions on **paper**, scan it and upload it to canvas as a single **pdf** file. Show complete work (show all the steps) and make sure that your scan is legible. Label your solutions and make sure they are in increasing order.

Remark. Don't write answers in decimals. Find exact answers using fractions or radicals.

1. [20 points] Find the general solutions of

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 y^2$$

2. [20 points] Find the general solutions of the following differential equation:

$$y'' + y' - 30y = 0$$

3. [20 points] Write the following system of equations in matrix form:

(a)

$$x' = 3x + y$$
$$y' = 2y - x$$

(b)

$$x' = 5tx + y - t^{2}z + t^{3}$$
$$y' = ty - t^{2}z + 1$$
$$z' = x + e^{t}y - z + \sin(t)$$

4. [10 points] Solve

$$y' + \cos(x)y = \cos(x)$$
 for $y(0) = 1$

- 5. [10 points] For the following:
 - Find the eigenvalues and eigenvectors.
 - Draw the vector field.
 - Plot at least two solutions (Not required to solve).

$$x_1' = 5x_1 + 2x_2 x_2' = 2x_1 - 3x_2$$

- 6. [10 points] Find the inverse Laplace transform of $\frac{3s+4}{s^2-s-6}$.
- 7. [10 points] Solve the equation

$$x''(t) - x(t) = t^3$$
, $x(0) = -1$, $x'(0) = 0$

8. [10 points] Solve the equation

$$x''(t) - x(t) = (t+1)u(t-2), \quad x(0) = 0, \quad x'(0) = 0$$

Here u(t) is the Heaviside function.