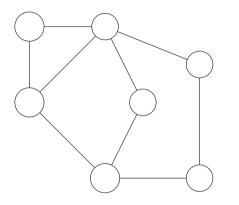
Modeling Content Spreading On Networks Through Network Science And Graph Neural Networks

Abhinav Chand

Kansas State University

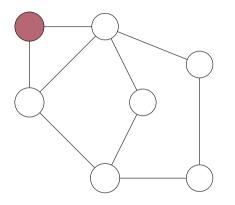
Joint Mathematics Meetings January 10, 2025



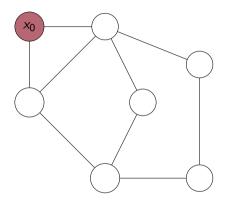
H.Z. Brooks, M.Porter (2024)

An "Opinion Reproduction Number" for Infodemics in a Bounded-Confidence Content-Spreading Process on Networks. arxiv:2403.01066

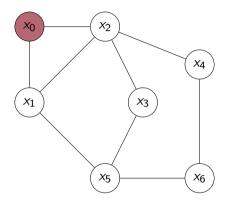
Undirected network



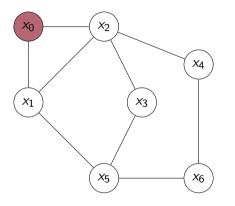
- Undirected network
- Choose source node 0 uniformly at random



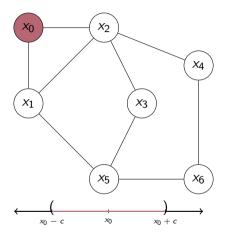
- Undirected network
- Choose source node 0 uniformly at random
- Content $x_0 \in [0,1]$ starts at node 0



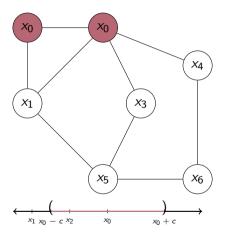
- Undirected network
- Choose source node 0 uniformly at random
- Content $x_0 \in [0,1]$ starts at node 0
- Initialize other nodes with opinion states $x_i \in [0, 1]$ chosen from some distribution



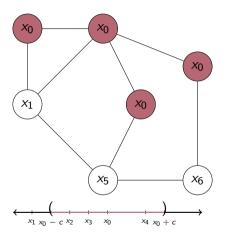
• Node 0 is active



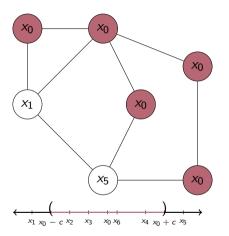
- Node 0 is active
- Choose a receptiveness parameter $c \in [0, \frac{1}{2}].$



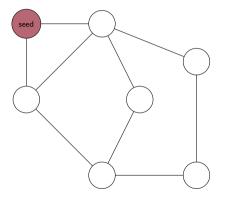
- Node 0 is active
- Choose a receptiveness parameter $c \in [0, \frac{1}{2}].$
- For a neighbor i of 0, if |x_i x₀| < c, activate it and x_i adopts the state x₀.



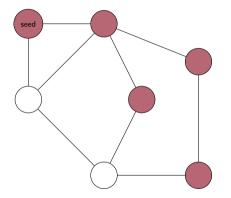
- Node 0 is active
- Choose a receptiveness parameter $c \in [0, \frac{1}{2}].$
- For a neighbor i of 0, if |x_i x₀| < c, activate it and x_i adopts the state x₀.
- The newly activated nodes try to influence their neighbors.



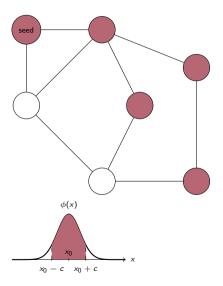
- Node 0 is active
- Choose a receptiveness parameter $c \in [0, \frac{1}{2}].$
- For a neighbor i of 0, if |x_i x₀| < c, activate it and x_i adopts the state x₀.
- The newly activated nodes try to influence their neighbors.



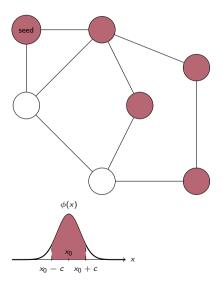
• Seed node is open.



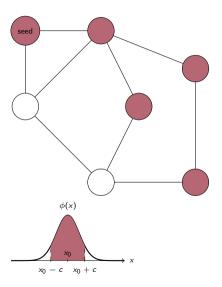
- Seed node is open.
- Every node is open with probability p and closed with probability 1 - p.



- Seed node is open.
- Every node is open with probability p and closed with probability 1 - p.
- The probability $p = \int_{x_0-c}^{x_0+c} \phi(x) dx$.

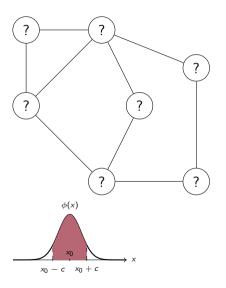


- Seed node is open.
- Every node is open with probability p and closed with probability 1 - p.
- The probability $p = \int_{x_0-c}^{x_0+c} \phi(x) dx$.
- p is called occupation probability.



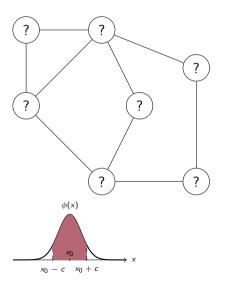
- Seed node is open.
- Every node is open with probability p and closed with probability 1 - p.
- The probability $p = \int_{x_0-c}^{x_0+c} \phi(x) dx$.
- p is called occupation probability.
- Influenced nodes are nodes that are contained in the "open" cluster containing the seed.

Two Questions



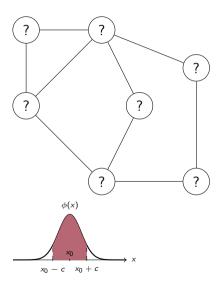
 Content state x₀, receptiveness parameter c and the distribution φ is known.

Two Questions



- Content state x₀, receptiveness parameter c and the distribution φ is known.
- Influence Maximization: What is the best seed to start the diffusion to maximize influence?
 E[size of cluster containing seed]

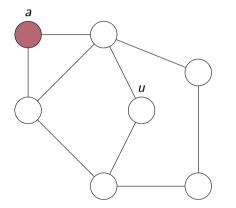
Two Questions



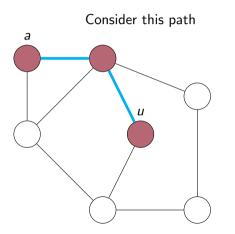
- Content state x₀, receptiveness parameter c and the distribution φ is known.
- Influence Maximization: What is the best seed to start the diffusion to maximize influence?
 E[size of cluster containing seed]
- Influence Computation: Given a seed what is the probability that a node is influenced?

 P_{seed}(v is influenced) for v ∈ V.
 (Note: This does not refer to occupation probability)

Example

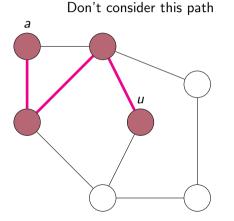


- *a* is the seed node. What is $\mathbb{P}_a(u \text{ influenced})$?
- Assume we know the "openness/occupation" probability *p*.



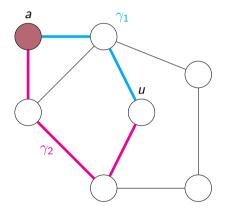
- *a* is the seed node. What is $\mathbb{P}_a(u \text{ influenced})$?
- Assume we know the "openness/occupation" probability *p*.

Example



- *a* is the seed node. What is $\mathbb{P}_a(u \text{ influenced})?$
- Assume we know the "openness/occupation" probability *p*.

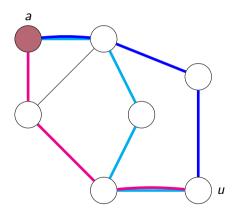
Example



- *a* is the seed node. What is $\mathbb{P}_a(u \text{ influenced})$?
- Assume we know the "openness/occupation" probability *p*.

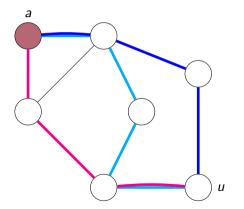
• Two paths
$$\gamma_1$$
 and γ_2 . So

$$egin{aligned} \mathbb{P}_{s}(u) &= \mathbb{P}(\gamma_{1}\cup\gamma_{2}) \ &= \mathbb{P}(\gamma_{1})+\mathbb{P}(\gamma_{2})-\mathbb{P}(\gamma_{1}\cap\gamma_{2}) \ &= p^{2}+p^{3}-p^{5} \end{aligned}$$



• Difficult: have to consider all chord-less paths and their intersections.

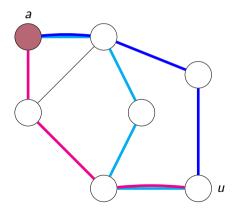
General Case



- Difficult: have to consider all chord-less paths and their intersections.
- Monstrous calculations (Bonferroni type):

$$\begin{split} \mathbb{P}(\gamma_1 \cup \gamma_2 \cup \gamma_3) &= \mathbb{P}(\gamma_1) + \mathbb{P}(\gamma_2) + \mathbb{P}(\gamma_3) - \mathbb{P}(\gamma_1 \cap \gamma_2) - \mathbb{P}(\gamma_1 \cap \gamma_3) \\ &- \mathbb{P}(\gamma_2 \cap \gamma_3) + \mathbb{P}(\gamma_1 \cap \gamma_2 \cap \gamma_3) \end{split}$$

General Case

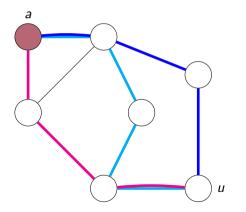


- Difficult: have to consider all chord-less paths and their intersections.
- Monstrous calculations (Bonferroni type):

$$\begin{split} \mathbb{P}(\gamma_1 \cup \gamma_2 \cup \gamma_3) &= \mathbb{P}(\gamma_1) + \mathbb{P}(\gamma_2) + \mathbb{P}(\gamma_3) - \mathbb{P}(\gamma_1 \cap \gamma_2) - \mathbb{P}(\gamma_1 \cap \gamma_3) \\ &- \mathbb{P}(\gamma_2 \cap \gamma_3) + \mathbb{P}(\gamma_1 \cap \gamma_2 \cap \gamma_3) \end{split}$$

• Paths might have intersections which implies correlations between events.

General Case

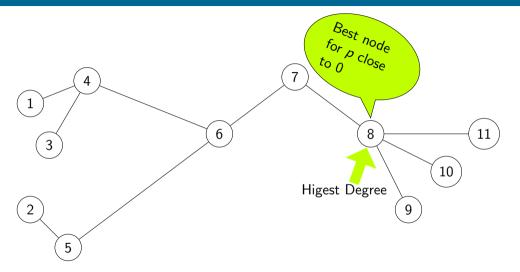


- Difficult: have to consider all chord-less paths and their intersections.
- Monstrous calculations (Bonferroni type):

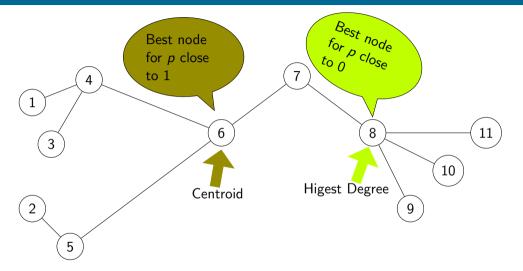
$$\begin{split} \mathbb{P}(\gamma_1 \cup \gamma_2 \cup \gamma_3) &= \mathbb{P}(\gamma_1) + \mathbb{P}(\gamma_2) + \mathbb{P}(\gamma_3) - \mathbb{P}(\gamma_1 \cap \gamma_2) - \mathbb{P}(\gamma_1 \cap \gamma_3) \\ &- \mathbb{P}(\gamma_2 \cap \gamma_3) + \mathbb{P}(\gamma_1 \cap \gamma_2 \cap \gamma_3) \end{split}$$

- Paths might have intersections which implies correlations between events.
- Influence maximization is NP-hard, and influence computation is #P-hard.

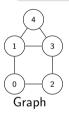
Trees are more tractable



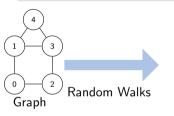
Trees are more tractable



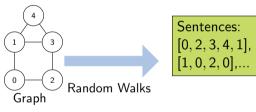
Goal



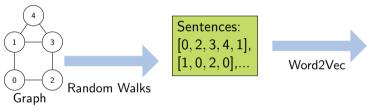
Goal

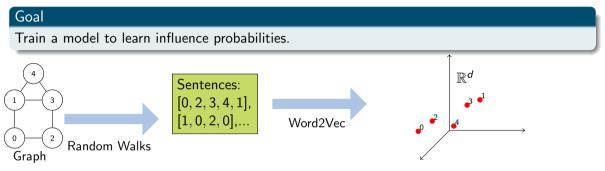


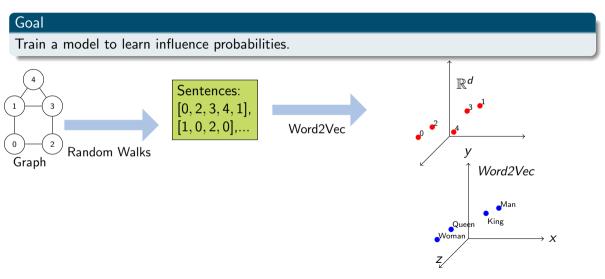
Goal



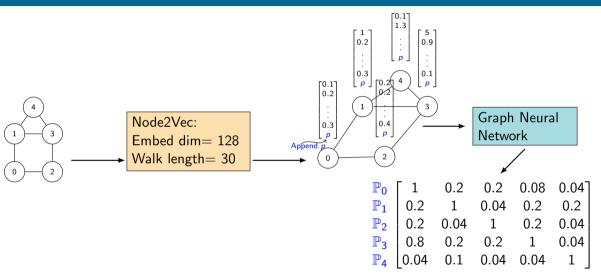
Goal



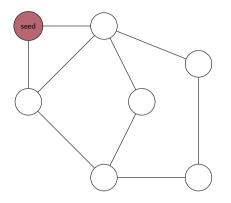




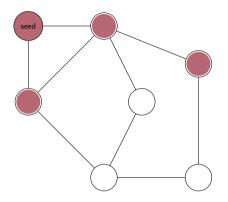
A.Chand



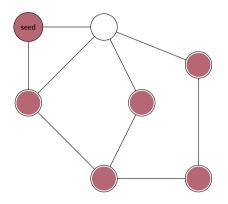
Synthetic Dataset



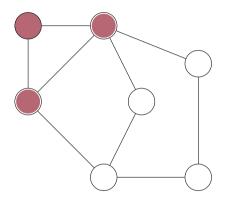
• Monte Carlo Simulations



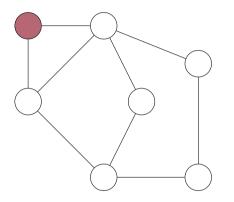
• Monte Carlo Simulations



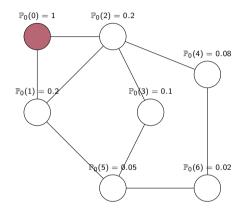
• Monte Carlo Simulations



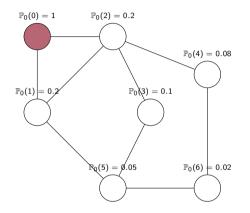
• Monte Carlo Simulations



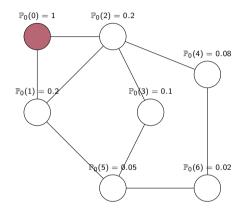
- Monte Carlo Simulations
- For each random graph, run MC starting from each node for 9 randomly chosen probabilities p ∈ [0, 1]. Complexity: O(|V|²) · |V|



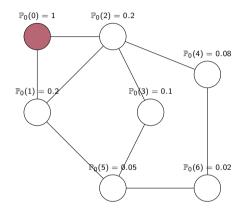
- Monte Carlo Simulations
- For each random graph, run MC starting from each node for 9 randomly chosen probabilities p ∈ [0, 1]. Complexity: O(|V|²) · |V|
- Example: p = 0.2Get first row of matrix: For p = 0.2, $[\mathbb{P}_0(0), \mathbb{P}_0(1), ..., \mathbb{P}_0(6)]$



- Monte Carlo Simulations
- For each random graph, run MC starting from each node for 9 randomly chosen probabilities p ∈ [0, 1]. Complexity: O(|V|²) · |V|
- Example: p = 0.2Get first row of matrix: For p = 0.2, $[\mathbb{P}_0(0), \mathbb{P}_0(1), ..., \mathbb{P}_0(6)]$
- 1000 random graphs of sizes 8-50 (random geometric, erdos-renyi, etc.).



- Monte Carlo Simulations
- For each random graph, run MC starting from each node for 9 randomly chosen probabilities p ∈ [0, 1].
 Complexity: O(|V|²) · |V|
- Example: p = 0.2Get first row of matrix: For p = 0.2, $[\mathbb{P}_0(0), \mathbb{P}_0(1), ..., \mathbb{P}_0(6)]$
- 1000 random graphs of sizes 8-50 (random geometric, erdos-renyi, etc.).
- $\bullet ~{\sim}11,000$ data points.



- Monte Carlo Simulations
- For each random graph, run MC starting from each node for 9 randomly chosen probabilities p ∈ [0, 1].
 Complexity: O(|V|²) · |V|
- Example: p = 0.2Get first row of matrix: For p = 0.2, $[\mathbb{P}_0(0), \mathbb{P}_0(1), ..., \mathbb{P}_0(6)]$
- 1000 random graphs of sizes 8-50 (random geometric, erdos-renyi, etc.).
- \sim 11,000 data points.
- 90-10 train-test split.

GNN Parameters and Results

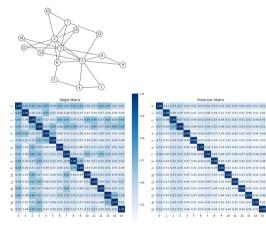


Figure: Sample graph with target and predicion matrices for p = 0.65

- Loss Function: Mean Squared Error (MSE)
- Graph neural network parameters: Number of layers: 3 (dropout 0.1) Hidden Dimension: 256 Batch: 4
- Training time ~ 15 minutes (GPU). Early stopping after 23 epochs
- Train Loss: MSE 0.0063 Test Loss: MSE 0.020

- 0.8

. . .

- 0.6

Future Work

• Interpret the graph neural network model. What is the model doing?

- Interpret the graph neural network model. What is the model doing?
- Find approximation algorithms for influence computation and influence maximization.

- Interpret the graph neural network model. What is the model doing?
- Find approximation algorithms for influence computation and influence maximization.
- Apply the methods from this work to other models in opinion dynamics and epidemic modeling.

Thank You!