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Model of Content Spreading
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Undirected network

Choose source node 0 uniformly at
random

Content x0 ∈ [0, 1] starts at node 0

Initialize other nodes with opinion states
xi ∈ [0, 1] chosen from some distribution
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Node 0 is active

Choose a receptiveness parameter
c ∈ [0, 12 ].

For a neighbor i of 0, if |xi − x0| < c ,
activate it and xi adopts the state x0.

The newly activated nodes try to
influence their neighbors.
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Site percolation is a special case

seed Seed node is open.

Every node is open with probability p
and closed with probability 1− p.

The probability p =
∫ x0+c
x0−c ϕ(x)dx .

p is called occupation probability.

Influenced nodes are nodes that are
contained in the “open” cluster
containing the seed.
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Two Questions
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x

ϕ(x)

x0

x0 − c x0 + c

Content state x0, receptiveness
parameter c and the distribution ϕ is
known.

Influence Maximization: What is the
best seed to start the diffusion to
maximize influence?
E[size of cluster containing seed]

Influence Computation: Given a seed
what is the probability that a node is
influenced?
Pseed(v is influenced) for v ∈ V .
(Note: This does not refer to
occupation probability)
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Example

a

u

a is the seed node. What is
Pa(u influenced)?

Assume we know the
“openness/occupation” probability p.

Two paths γ1 and γ2. So

Pa(u) = P(γ1 ∪ γ2)

= P(γ1) + P(γ2)− P(γ1 ∩ γ2)

= p2 + p3 − p5
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General Case

a

u

Difficult: have to consider all chord-less
paths and their intersections.

Monstrous calculations (Bonferroni type):

P(γ1 ∪ γ2 ∪ γ3) = P(γ1) + P(γ2) + P(γ3) − P(γ1 ∩ γ2) − P(γ1 ∩ γ3)

− P(γ2 ∩ γ3) + P(γ1 ∩ γ2 ∩ γ3)

Paths might have intersections which
implies correlations between events.

Influence maximization is NP-hard, and
influence computation is #P-hard.
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Trees are more tractable
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Towards Deep Learning: Node2Vec for input embeddings

Goal

Train a model to learn influence probabilities.
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Model Architecture
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Append p

Graph Neural
Network

P0

P1

P2

P3

P4


1 0.2 0.2 0.08 0.04
0.2 1 0.04 0.2 0.2
0.2 0.04 1 0.2 0.04
0.8 0.2 0.2 1 0.04
0.04 0.1 0.04 0.04 1
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Synthetic Dataset

seed Monte Carlo Simulations

For each random graph, run MC starting
from each node for 9 randomly chosen
probabilities p ∈ [0, 1].
Complexity: O(|V |2) · |V |
Example: p = 0.2
Get first row of matrix: For p = 0.2,
[P0(0),P0(1), ...,P0(6)]

1000 random graphs of sizes 8-50
(random geometric, erdos-renyi, etc.).

∼11,000 data points.

90-10 train-test split.
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GNN Parameters and Results

Figure: Sample graph with target and predicion matrices for p = 0.65

Loss Function: Mean Squared Error
(MSE)

Graph neural network parameters:
Number of layers: 3 (dropout 0.1)
Hidden Dimension: 256
Batch: 4

Training time ∼15 minutes (GPU). Early
stopping after 23 epochs

Train Loss: MSE 0.0063
Test Loss: MSE 0.020
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Future Work

Interpret the graph neural network model. What is the model doing?

Find approximation algorithms for influence computation and influence maximization.

Apply the methods from this work to other models in opinion dynamics and epidemic
modeling.
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Thank You!


